3.7.71 \(\int \frac {1}{\sqrt {2-3 \sec (c+d x)} \sqrt {\sec (c+d x)}} \, dx\) [671]

3.7.71.1 Optimal result
3.7.71.2 Mathematica [A] (verified)
3.7.71.3 Rubi [A] (verified)
3.7.71.4 Maple [B] (verified)
3.7.71.5 Fricas [C] (verification not implemented)
3.7.71.6 Sympy [F]
3.7.71.7 Maxima [F]
3.7.71.8 Giac [F]
3.7.71.9 Mupad [F(-1)]

3.7.71.1 Optimal result

Integrand size = 25, antiderivative size = 108 \[ \int \frac {1}{\sqrt {2-3 \sec (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {E\left (\left .\frac {1}{2} (c+d x)\right |-4\right ) \sqrt {2-3 \sec (c+d x)}}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {3 \sqrt {3-2 \cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),-4\right ) \sqrt {\sec (c+d x)}}{d \sqrt {2-3 \sec (c+d x)}} \]

output
(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2* 
c),2*I)*(2-3*sec(d*x+c))^(1/2)/d/(3-2*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)+3 
*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2 
*c),2*I)*(3-2*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2)/d/(2-3*sec(d*x+c))^(1/2)
 
3.7.71.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.63 \[ \int \frac {1}{\sqrt {2-3 \sec (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {\sqrt {3-2 \cos (c+d x)} \left (E\left (\left .\frac {1}{2} (c+d x)\right |-4\right )-3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),-4\right )\right ) \sqrt {\sec (c+d x)}}{d \sqrt {2-3 \sec (c+d x)}} \]

input
Integrate[1/(Sqrt[2 - 3*Sec[c + d*x]]*Sqrt[Sec[c + d*x]]),x]
 
output
-((Sqrt[3 - 2*Cos[c + d*x]]*(EllipticE[(c + d*x)/2, -4] - 3*EllipticF[(c + 
 d*x)/2, -4])*Sqrt[Sec[c + d*x]])/(d*Sqrt[2 - 3*Sec[c + d*x]]))
 
3.7.71.3 Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 4349, 3042, 4343, 3042, 3134, 3042, 3132, 4345, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {2-3 \sec (c+d x)} \sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {2-3 \csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4349

\(\displaystyle \frac {1}{2} \int \frac {\sqrt {2-3 \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx+\frac {3}{2} \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {2-3 \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {\sqrt {2-3 \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {3}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {2-3 \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4343

\(\displaystyle \frac {3}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {2-3 \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {\sqrt {2-3 \sec (c+d x)} \int \sqrt {2 \cos (c+d x)-3}dx}{2 \sqrt {2 \cos (c+d x)-3} \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {2-3 \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {\sqrt {2-3 \sec (c+d x)} \int \sqrt {2 \sin \left (c+d x+\frac {\pi }{2}\right )-3}dx}{2 \sqrt {2 \cos (c+d x)-3} \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {3}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {2-3 \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {\sqrt {2-3 \sec (c+d x)} \int \sqrt {3-2 \cos (c+d x)}dx}{2 \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {2-3 \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {\sqrt {2-3 \sec (c+d x)} \int \sqrt {3-2 \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {3}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {2-3 \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {\sqrt {2-3 \sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |-4\right )}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4345

\(\displaystyle \frac {3 \sqrt {2 \cos (c+d x)-3} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {2 \cos (c+d x)-3}}dx}{2 \sqrt {2-3 \sec (c+d x)}}+\frac {\sqrt {2-3 \sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |-4\right )}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \sqrt {2 \cos (c+d x)-3} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {2 \sin \left (c+d x+\frac {\pi }{2}\right )-3}}dx}{2 \sqrt {2-3 \sec (c+d x)}}+\frac {\sqrt {2-3 \sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |-4\right )}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {3 \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {3-2 \cos (c+d x)}}dx}{2 \sqrt {2-3 \sec (c+d x)}}+\frac {\sqrt {2-3 \sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |-4\right )}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {3-2 \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 \sqrt {2-3 \sec (c+d x)}}+\frac {\sqrt {2-3 \sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |-4\right )}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {3 \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),-4\right )}{d \sqrt {2-3 \sec (c+d x)}}+\frac {\sqrt {2-3 \sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |-4\right )}{d \sqrt {3-2 \cos (c+d x)} \sqrt {\sec (c+d x)}}\)

input
Int[1/(Sqrt[2 - 3*Sec[c + d*x]]*Sqrt[Sec[c + d*x]]),x]
 
output
(EllipticE[(c + d*x)/2, -4]*Sqrt[2 - 3*Sec[c + d*x]])/(d*Sqrt[3 - 2*Cos[c 
+ d*x]]*Sqrt[Sec[c + d*x]]) + (3*Sqrt[3 - 2*Cos[c + d*x]]*EllipticF[(c + d 
*x)/2, -4]*Sqrt[Sec[c + d*x]])/(d*Sqrt[2 - 3*Sec[c + d*x]])
 

3.7.71.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4349
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)]), x_Symbol] :> Simp[1/a   Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Cs 
c[e + f*x]], x], x] - Simp[b/(a*d)   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Cs 
c[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 
3.7.71.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 342 vs. \(2 (146 ) = 292\).

Time = 7.29 (sec) , antiderivative size = 343, normalized size of antiderivative = 3.18

method result size
default \(-\frac {\sqrt {\frac {5 \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (2 i \sqrt {5}\, \operatorname {EllipticF}\left (i \sqrt {5}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \frac {\sqrt {5}}{5}\right ) \sqrt {5 \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}-5 i \sqrt {5}\, \operatorname {EllipticE}\left (i \sqrt {5}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \frac {\sqrt {5}}{5}\right ) \sqrt {5 \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}-25 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+5 \cot \left (d x +c \right )-5 \csc \left (d x +c \right )\right )}{5 d \left (5 \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) \sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}\) \(343\)
risch \(-\frac {i \left ({\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1\right )}{d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {{\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {i \left (-\frac {2 \left ({\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1\right )}{\sqrt {{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1\right )}}+\frac {2 \left (\frac {\sqrt {5}}{2}-\frac {3}{2}\right ) \sqrt {-\frac {{\mathrm e}^{i \left (d x +c \right )}-\frac {3}{2}+\frac {\sqrt {5}}{2}}{\frac {3}{2}-\frac {\sqrt {5}}{2}}}\, \sqrt {-5 \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {3}{2}-\frac {\sqrt {5}}{2}\right ) \sqrt {5}}\, \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{\frac {3}{2}-\frac {\sqrt {5}}{2}}}\, \left (-\sqrt {5}\, \operatorname {EllipticE}\left (\sqrt {-\frac {{\mathrm e}^{i \left (d x +c \right )}-\frac {3}{2}+\frac {\sqrt {5}}{2}}{\frac {3}{2}-\frac {\sqrt {5}}{2}}}, \frac {i \sqrt {5}\, \sqrt {\left (\frac {3}{2}-\frac {\sqrt {5}}{2}\right ) \sqrt {5}}}{5}\right )+\left (\frac {3}{2}+\frac {\sqrt {5}}{2}\right ) \operatorname {EllipticF}\left (\sqrt {-\frac {{\mathrm e}^{i \left (d x +c \right )}-\frac {3}{2}+\frac {\sqrt {5}}{2}}{\frac {3}{2}-\frac {\sqrt {5}}{2}}}, \frac {i \sqrt {5}\, \sqrt {\left (\frac {3}{2}-\frac {\sqrt {5}}{2}\right ) \sqrt {5}}}{5}\right )\right )}{5 \sqrt {{\mathrm e}^{3 i \left (d x +c \right )}-3 \,{\mathrm e}^{2 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}}}\right ) \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1\right )}}{d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {{\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}+1}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}\) \(535\)

input
int(1/(2-3*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/5/d*((5*(1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2 
-1))^(1/2)*(2*I*5^(1/2)*EllipticF(I*5^(1/2)*(-cot(d*x+c)+csc(d*x+c)),1/5*5 
^(1/2))*(5*(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((1-cos(d*x+c))^2*csc(d* 
x+c)^2+1)^(1/2)-5*I*5^(1/2)*EllipticE(I*5^(1/2)*(-cot(d*x+c)+csc(d*x+c)),1 
/5*5^(1/2))*(5*(1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*((1-cos(d*x+c))^2*cs 
c(d*x+c)^2+1)^(1/2)-25*(1-cos(d*x+c))^3*csc(d*x+c)^3+5*cot(d*x+c)-5*csc(d* 
x+c))/(5*(1-cos(d*x+c))^2*csc(d*x+c)^2+1)/(-((1-cos(d*x+c))^2*csc(d*x+c)^2 
+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)
 
3.7.71.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.88 \[ \int \frac {1}{\sqrt {2-3 \sec (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {-i \, {\rm weierstrassPInverse}\left (8, 4, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right ) - 1\right ) + i \, {\rm weierstrassPInverse}\left (8, 4, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right ) - 1\right ) + i \, {\rm weierstrassZeta}\left (8, 4, {\rm weierstrassPInverse}\left (8, 4, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right ) - 1\right )\right ) - i \, {\rm weierstrassZeta}\left (8, 4, {\rm weierstrassPInverse}\left (8, 4, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right ) - 1\right )\right )}{d} \]

input
integrate(1/(2-3*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")
 
output
(-I*weierstrassPInverse(8, 4, cos(d*x + c) + I*sin(d*x + c) - 1) + I*weier 
strassPInverse(8, 4, cos(d*x + c) - I*sin(d*x + c) - 1) + I*weierstrassZet 
a(8, 4, weierstrassPInverse(8, 4, cos(d*x + c) + I*sin(d*x + c) - 1)) - I* 
weierstrassZeta(8, 4, weierstrassPInverse(8, 4, cos(d*x + c) - I*sin(d*x + 
 c) - 1)))/d
 
3.7.71.6 Sympy [F]

\[ \int \frac {1}{\sqrt {2-3 \sec (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {2 - 3 \sec {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

input
integrate(1/(2-3*sec(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)
 
output
Integral(1/(sqrt(2 - 3*sec(c + d*x))*sqrt(sec(c + d*x))), x)
 
3.7.71.7 Maxima [F]

\[ \int \frac {1}{\sqrt {2-3 \sec (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {-3 \, \sec \left (d x + c\right ) + 2} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate(1/(2-3*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(-3*sec(d*x + c) + 2)*sqrt(sec(d*x + c))), x)
 
3.7.71.8 Giac [F]

\[ \int \frac {1}{\sqrt {2-3 \sec (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {-3 \, \sec \left (d x + c\right ) + 2} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate(1/(2-3*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(-3*sec(d*x + c) + 2)*sqrt(sec(d*x + c))), x)
 
3.7.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {2-3 \sec (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {2-\frac {3}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int(1/((2 - 3/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(1/2)),x)
 
output
int(1/((2 - 3/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(1/2)), x)